Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Remote Sens Environ ; 264: 112609, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34602655

RESUMO

Remote sensing-based measurements of solar-induced chlorophyll fluorescence (SIF) are useful for assessing plant functioning at different spatial and temporal scales. SIF is the most direct measure of photosynthesis and is therefore considered important to advance capacity for the monitoring of gross primary production (GPP) while it has also been suggested that its yield facilitates the early detection of vegetation stress. However, due to the influence of different confounding effects, the apparent SIF signal measured at canopy level differs from the fluorescence emitted at leaf level, which makes its physiological interpretation challenging. One of these effects is the scattering of SIF emitted from leaves on its way through the canopy. The escape fraction ( f esc ) describes the scattering of SIF within the canopy and corresponds to the ratio of apparent SIF at canopy level to SIF at leaf level. In the present study, the fluorescence correction vegetation index (FCVI) was used to determine f esc of far-red SIF for three structurally different crops (sugar beet, winter wheat, and fruit trees) from a diurnal data set recorded by the airborne imaging spectrometer HyPlant. This unique data set, for the first time, allowed a joint analysis of spatial and temporal dynamics of structural effects and thus the downscaling of far-red SIF from canopy ( SIF 760 canopy ) to leaf level ( SIF 760 leaf ). For a homogeneous crop such as winter wheat, it seems to be sufficient to determine f esc once a day to reliably scale SIF760 from canopy to leaf level. In contrast, for more complex canopies such as fruit trees, calculating f esc for each observation time throughout the day is strongly recommended. The compensation for structural effects, in combination with normalizing SIF760 to remove the effect of incoming radiation, further allowed the estimation of SIF emission efficiency ( ε SIF ) at leaf level, a parameter directly related to the diurnal variations of plant photosynthetic efficiency.

2.
Sensors (Basel) ; 21(15)2021 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-34372309

RESUMO

The aim of this study is to test a series of methods relying on hyperspectral measurements to characterize phytoplankton in clear lake waters. The phytoplankton temporal evolutions were analyzed exploiting remote sensed indices and metrics linked to the amount of light reaching the target (EPAR), the chlorophyll-a concentration ([Chl-a]OC4) and the fluorescence emission proxy. The latter one evaluated by an adapted version of the Fluorescence Line Height algorithm (FFLH). A peculiar trend was observed around the solar noon during the clear sky days. It is characterized by a drop of the FFLH metric and the [Chl-a]OC4 index. In addition to remote sensed parameters, water samples were also collected and analyzed to characterize the water body and to evaluate the in-situ fluorescence (FF) and absorbed light (FA). The relations between the remote sensed quantities and the in-situ values were employed to develop and test several phytoplankton primary production (PP) models. Promising results were achieved replacing the FA by the EPAR or FFLH in the equation evaluating a PP proxy (R2 > 0.65). This study represents a preliminary outcome supporting the PP monitoring in inland waters by means of remote sensing-based indices and fluorescence metrics.


Assuntos
Lagos , Fitoplâncton , Clorofila/análise , Clorofila A , Monitoramento Ambiental , Tecnologia de Sensoriamento Remoto
3.
Sensors (Basel) ; 20(16)2020 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-32823847

RESUMO

This study presents a first assessment of the Top-Of-Atmosphere (TOA) radiances measured in the visible and near-infrared (VNIR) wavelengths from PRISMA (PRecursore IperSpettrale della Missione Applicativa), the new hyperspectral satellite sensor of the Italian Space Agency in orbit since March 2019. In particular, the radiometrically calibrated PRISMA Level 1 TOA radiances were compared to the TOA radiances simulated with a radiative transfer code, starting from in situ measurements of water reflectance. In situ data were obtained from a set of fixed position autonomous radiometers covering a wide range of water types, encompassing coastal and inland waters. A total of nine match-ups between PRISMA and in situ measurements distributed from July 2019 to June 2020 were analysed. Recognising the role of Sentinel-2 for inland and coastal waters applications, the TOA radiances measured from concurrent Sentinel-2 observations were added to the comparison. The results overall demonstrated that PRISMA VNIR sensor is providing TOA radiances with the same magnitude and shape of those in situ simulated (spectral angle difference, SA, between 0.80 and 3.39; root mean square difference, RMSD, between 0.98 and 4.76 [mW m-2 sr-1 nm-1]), with slightly larger differences at shorter wavelengths. The PRISMA TOA radiances were also found very similar to Sentinel-2 data (RMSD < 3.78 [mW m-2 sr-1 nm-1]), and encourage a synergic use of both sensors for aquatic applications. Further analyses with a higher number of match-ups between PRISMA, in situ and Sentinel-2 data are however recommended to fully characterize the on-orbit calibration of PRISMA for its exploitation in aquatic ecosystem mapping.

4.
Plant Cell Environ ; 43(7): 1637-1654, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32167577

RESUMO

Passive measurement of sun-induced chlorophyll fluorescence (F) represents the most promising tool to quantify changes in photosynthetic functioning on a large scale. However, the complex relationship between this signal and other photosynthesis-related processes restricts its interpretation under stress conditions. To address this issue, we conducted a field campaign by combining daily airborne and ground-based measurements of F (normalized to photosynthetically active radiation), reflectance and surface temperature and related the observed changes to stress-induced variations in photosynthesis. A lawn carpet was sprayed with different doses of the herbicide Dicuran. Canopy-level measurements of gross primary productivity indicated dosage-dependent inhibition of photosynthesis by the herbicide. Dosage-dependent changes in normalized F were also detected. After spraying, we first observed a rapid increase in normalized F and in the Photochemical Reflectance Index, possibly due to the blockage of electron transport by Dicuran and the resultant impairment of xanthophyll-mediated non-photochemical quenching. This initial increase was followed by a gradual decrease in both signals, which coincided with a decline in pigment-related reflectance indices. In parallel, we also detected a canopy temperature increase after the treatment. These results demonstrate the potential of using F coupled with relevant reflectance indices to estimate stress-induced changes in canopy photosynthesis.


Assuntos
Clorofila/efeitos da radiação , Fotossíntese/efeitos da radiação , Fluorescência , Modelos Biológicos , Plantas/efeitos da radiação , Estresse Fisiológico , Luz Solar
5.
Remote Sens Environ ; 2312019 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-33414568

RESUMO

Remote sensing of solar-induced chlorophyll fluorescence (SIF) is a rapidly advancing front in terrestrial vegetation science, with emerging capability in space-based methodologies and diverse application prospects. Although remote sensing of SIF - especially from space - is seen as a contemporary new specialty for terrestrial plants, it is founded upon a multi-decadal history of research, applications, and sensor developments in active and passive sensing of chlorophyll fluorescence. Current technical capabilities allow SIF to be measured across a range of biological, spatial, and temporal scales. As an optical signal, SIF may be assessed remotely using highly-resolved spectral sensors and state-of-the-art algorithms to distinguish the emission from reflected and/or scattered ambient light. Because the red to far-red SIF emission is detectable non-invasively, it may be sampled repeatedly to acquire spatio-temporally explicit information about photosynthetic light responses and steady-state behaviour in vegetation. Progress in this field is accelerating with innovative sensor developments, retrieval methods, and modelling advances. This review distills the historical and current developments spanning the last several decades. It highlights SIF heritage and complementarity within the broader field of fluorescence science, the maturation of physiological and radiative transfer modelling, SIF signal retrieval strategies, techniques for field and airborne sensing, advances in satellite-based systems, and applications of these capabilities in evaluation of photosynthesis and stress effects. Progress, challenges, and future directions are considered for this unique avenue of remote sensing.

6.
Remote Sens Environ ; 231: 111272, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36082142

RESUMO

Terrestrial gross primary productivity (GPP) plays an essential role in the global carbon cycle, but the quantification of the spatial and temporal variations in photosynthesis is still largely uncertain. Our work aimed to investigate the potential of remote sensing to provide new insights into plant photosynthesis at a fine spatial resolution. This goal was achieved by exploiting high-resolution images acquired with the FLuorescence EXplorer (FLEX) airborne demonstrator HyPlant. The sensor was flown over a mixed forest, and the images collected were elaborated to obtain two independent indicators of plant photosynthesis. First, maps of sun-induced chlorophyll fluorescence (F), a novel indicator of plant photosynthetic activity, were successfully obtained at both the red and far-red peaks (r2 = 0.89 and p < 0.01, r2 = 0.77 and p < 0.01, respectively, compared to top-of-canopy ground-based measurements acquired synchronously with the overflight) over the forested study area. Second, maps of GPP and absorbed photosynthetically active radiation (APAR) were derived using a customised version of the coupled biophysical model Breathing Earth System Simulator (BESS). The model was driven with airborne-derived maps of key forest traits (i.e., leaf chlorophyll content (LCC) and leaf area index (LAI)) and meteorological data providing a high-resolution snapshot of the variables of interest across the study site. The LCC and LAI were accurately estimated (RMSE = 5.66 µg cm-2 and RMSE = 0.51 m2m-2, respectively) through an optimised Look-Up-Table-based inversion of the PROSPECT-4-INFORM radiative transfer model, ensuring the accurate representation of the spatial variation of these determinants of the ecosystem's functionality. The spatial relationships between the measured F and modelled BESS outputs were then analysed to interpret the variability of ecosystem functioning at a regional scale. The results showed that far-red F is significantly correlated with the GPP (r2 = 0.46, p < 0.001) and APAR (r2 = 0.43, p < 0.001) in the spatial domain and that this relationship is nonlinear. Conversely, no statistically significant relationships were found between the red F and the GPP or APAR (p > 0.05). The spatial relationships found at high resolution provide valuable insight into the critical role of spatial heterogeneity in controlling the relationship between the far-red F and the GPP, indicating the need to consider this heterogeneity at a coarser resolution.

7.
Glob Chang Biol ; 24(7): 2980-2996, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29460467

RESUMO

Leaf fluorescence can be used to track plant development and stress, and is considered the most direct measurement of photosynthetic activity available from remote sensing techniques. Red and far-red sun-induced chlorophyll fluorescence (SIF) maps were generated from high spatial resolution images collected with the HyPlant airborne spectrometer over even-aged loblolly pine plantations in North Carolina (United States). Canopy fluorescence yield (i.e., the fluorescence flux normalized by the light absorbed) in the red and far-red peaks was computed. This quantifies the fluorescence emission efficiencies that are more directly linked to canopy function compared to SIF radiances. Fluorescence fluxes and yields were investigated in relation to tree age to infer new insights on the potential of those measurements in better describing ecosystem processes. The results showed that red fluorescence yield varies with stand age. Young stands exhibited a nearly twofold higher red fluorescence yield than mature forest plantations, while the far-red fluorescence yield remained constant. We interpreted this finding in a context of photosynthetic stomatal limitation in aging loblolly pine stands. Current and future satellite missions provide global datasets of SIF at coarse spatial resolution, resulting in intrapixel mixture effects, which could be a confounding factor for fluorescence signal interpretation. To mitigate this effect, we propose a surrogate of the fluorescence yield, namely the Canopy Cover Fluorescence Index (CCFI) that accounts for the spatial variability in canopy structure by exploiting the vegetation fractional cover. It was found that spatial aggregation tended to mask the effective relationships, while the CCFI was still able to maintain this link. This study is a first attempt in interpreting the fluorescence variability in aging forest stands and it may open new perspectives in understanding long-term forest dynamics in response to future climatic conditions from remote sensing of SIF.


Assuntos
Clorofila/fisiologia , Florestas , Fotossíntese/fisiologia , Pinus taeda/fisiologia , Folhas de Planta/fisiologia , Fluorescência , North Carolina , Desenvolvimento Vegetal
8.
Environ Sci Technol ; 52(6): 3546-3555, 2018 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-29474062

RESUMO

Light absorbing aerosols (LAA) absorb sunlight and heat the atmosphere. This work presents a novel methodology to experimentally quantify the heating rate (HR) induced by LAA into an atmospheric layer. Multiwavelength aerosol absorption measurements were coupled with spectral measurements of the direct, diffuse and surface reflected radiation to obtain highly time-resolved measurements of HR apportioned in the context of LAA species (black carbon, BC; brown carbon, BrC; dust), sources (fossil fuel, FF; biomass burning, BB), and as a function of cloudiness. One year of continuous and time-resolved measurements (5 min) of HR were performed in the Po Valley. We experimentally determined (1) the seasonal behavior of HR (winter 1.83 ± 0.02 K day-1; summer 1.04 ± 0.01 K day-1); (2) the daily cycle of HR (asymmetric, with higher values in the morning than in the afternoon); (3) the HR in different sky conditions (from 1.75 ± 0.03 K day-1 in clear sky to 0.43 ± 0.01 K day-1 in complete overcast); (4) the apportionment to different sources: HRFF (0.74 ± 0.01 K day-1) and HRBB (0.46 ± 0.01 K day-1); and (4) the HR of BrC (HRBrC: 0.15 ± 0.01 K day-1, 12.5 ± 0.6% of the total) and that of BC (HRBC: 1.05 ± 0.02 K day-1; 87.5 ± 0.6% of the total).


Assuntos
Monitoramento Ambiental , Calefação , Aerossóis , Atmosfera , Carbono , Fuligem
9.
Plant Cell Environ ; 39(7): 1500-12, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-26763162

RESUMO

Passive detection of sun-induced chlorophyll fluorescence (SIF) using spectroscopy has been proposed as a proxy to quantify changes in photochemical efficiency at canopy level under natural light conditions. In this study, we explored the use of imaging spectroscopy to quantify spatio-temporal dynamics of SIF within crop canopies and its sensitivity to track patterns of photosynthetic activity originating from the interaction between vegetation structure and incoming radiation as well as variations in plant function. SIF was retrieved using the Fraunhofer Line Depth (FLD) principle from imaging spectroscopy data acquired at different time scales a few metres above several crop canopies growing under natural illumination. We report the first maps of canopy SIF in high spatial resolution. Changes of SIF were monitored at different time scales ranging from quick variations under induced stress conditions to seasonal dynamics. Natural changes were primarily determined by varying levels and distribution of photosynthetic active radiation (PAR). However, this relationship changed throughout the day demonstrating an additional physiological component modulating spatio-temporal patterns of SIF emission. We successfully used detailed SIF maps to track changes in the canopy's photochemical activity under field conditions, providing a new tool to evaluate complex patterns of photosynthesis within the canopy.


Assuntos
Clorofila/análise , Produtos Agrícolas/metabolismo , Fotossíntese , Espectrometria de Fluorescência/métodos , Diurona , Estações do Ano , Triticum , Zea mays
10.
Sensors (Basel) ; 11(8): 7954-81, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22164055

RESUMO

This paper reviews the currently available optical sensors, their limitations and opportunities for deployment at Eddy Covariance (EC) sites in Europe. This review is based on the results obtained from an online survey designed and disseminated by the Co-cooperation in Science and Technology (COST) Action ESO903-"Spectral Sampling Tools for Vegetation Biophysical Parameters and Flux Measurements in Europe" that provided a complete view on spectral sampling activities carried out within the different research teams in European countries. The results have highlighted that a wide variety of optical sensors are in use at flux sites across Europe, and responses further demonstrated that users were not always fully aware of the key issues underpinning repeatability and the reproducibility of their spectral measurements. The key findings of this survey point towards the need for greater awareness of the need for standardisation and development of a common protocol of optical sampling at the European EC sites.


Assuntos
Monitoramento Ambiental/métodos , Óptica e Fotônica , Radiometria/métodos , Biofísica/métodos , Calibragem , Clima , Mudança Climática , Conservação dos Recursos Naturais , Análise Custo-Benefício , Ecossistema , Processamento Eletrônico de Dados , Europa (Continente) , Cooperação Internacional , Luz , Reprodutibilidade dos Testes , Inquéritos e Questionários , Fatores de Tempo
11.
Appl Opt ; 49(15): 2858-71, 2010 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-20490248

RESUMO

The accurate spectral characterization of high-resolution spectrometers is required for correctly computing, interpreting, and comparing radiance and reflectance spectra acquired at different times or by different instruments. In this paper, we describe an algorithm for the spectral characterization of field spectrometer data using sharp atmospheric or solar absorption features present in the measured data. The algorithm retrieves systematic shifts in channel position and actual full width at half-maximum (FWHM) of the instrument by comparing data acquired during standard field spectroscopy measurement operations with a reference irradiance spectrum modeled with the MODTRAN4 radiative transfer code. Measurements from four different field spectrometers with spectral resolutions ranging from 0.05 to 3.5nm are processed and the results validated against laboratory calibration. An accurate retrieval of channel position and FWHM has been achieved, with an average error smaller than the instrument spectral sampling interval.


Assuntos
Algoritmos , Atmosfera/química , Monitoramento Ambiental/instrumentação , Monitoramento Ambiental/métodos , Energia Solar , Análise Espectral/instrumentação , Análise Espectral/métodos , Desenho de Equipamento , Análise de Falha de Equipamento , Refratometria
12.
Environ Pollut ; 157(5): 1413-20, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-18976842

RESUMO

In this paper, a literature review about optical remote sensing (RS) of O(3) stress is presented. Studies on O(3)-induced effects on vegetation reflectance have been conducted since late '70s based on the analysis of optical RS data. Literature review reveals that traditional RS techniques were able to detect changes in leaf and canopy reflectance related to O(3)-induced stress when visible symptoms already occurred. Only recently, advanced RS techniques using hyperspectral sensors, demonstrated the feasibility of detecting the stress in its early phase by monitoring excess energy dissipation pathways such as chlorophyll fluorescence and non-photochemical quenching (NPQ). Steady-state fluorescence (Fs), measured by exploiting the Fraunhofer line depth principle and NPQ related xanthophyll-cycle, estimated through the photochemical reflectance index (PRI) responded to O(3) fumigation before visible symptoms occurred. This opens up new possibilities for the early detection of vegetation O(3) stress by means of hyperspectral RS.


Assuntos
Poluentes Atmosféricos/análise , Monitoramento Ambiental/métodos , Oxidantes Fotoquímicos/análise , Ozônio/análise , Folhas de Planta/química , Poluentes Atmosféricos/metabolismo , Clorofila/química , Monitoramento Ambiental/instrumentação , Dispositivos Ópticos , Oxidantes Fotoquímicos/metabolismo , Estresse Oxidativo , Ozônio/metabolismo , Fotoquímica , Folhas de Planta/metabolismo , Espectrometria de Fluorescência/métodos , Telemetria/métodos , Xantofilas/química
13.
Sensors (Basel) ; 8(3): 1740-1754, 2008 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-27879790

RESUMO

High spectral resolution spectrometers were used to detect optical signals ofongoing plant stress in potted white clover canopies subjected to ozone fumigation. Thecase of ozone stress is used in this manuscript as a paradigm of oxidative stress. Steadystatefluorescence (Fs) and the Photochemical Reflectance Index (PRI) were investigatedas advanced hyperspectral remote sensing techniques able to sense variations in the excessenergy dissipation pathways occurring when photosynthesis declines in plants exposed to astress agent. Fs and PRI were monitored in control and ozone fumigated canopies during a21-day experiment together with the traditional Normalized Difference Vegetation Index(NDVI) and physiological measurements commonly employed by physiologists to describestress development (i.e. net CO2 assimilation, active fluorimetry, chlorophyll concentrationand visible injuries). It is shown that remote detection of an ongoing stress through Fs andPRI can be achieved in an early phase, characterized by the decline of photosynthesis. Onthe contrary, NDVI was able to detect the stress only when damage occurred. These resultsopen up new possibilities for assessment of plant stress by means of hyperspectral remotesensing.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...